

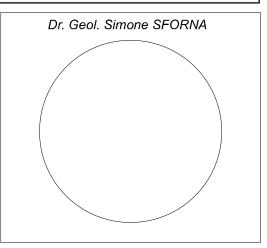
Studio di geologia **Dr. Geol. Simone SFORNA**

Albo O.R.G.U. n. 112 Via Bastia, 2 - 06080 Brufa di Torgiano (PG)

> Cell. 347 - 3362235 Fax: 075 - 9691456

E-mail: simonesforna@tiscali.it simonesforna@libero.it PEC: simonesforna@epap.sicurezzapostale.it

C.F. SFR SMN 64M05 L216A - P. IVA 01859390542


COMUNE DI TORGIANO

PROGETTO PER L'AMPLIAMENTO MAGAZZINO PER PRODOTTI SIDERURGICI Zona Ind.le Miralduolo

CARATTERIZZAZIONE GEOLOGICA DEL SITO
DEFINIZIONE DELLA PERICOLOSITA' SISMICA DI BASE

RELAZIONE GEOLOGICA E SULLA MODELLAZIONE SISMICA

PROPRIETA': WILSIDER S.p	o.a.
dicembre 2016	Archivio
P.P.V.	P.P.V.
II Progettista strutturale	Il Direttore dei lavori

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

INDICE

PREMESSA	4
1.1 Intervento in progetto	4
2.0 STUDIO GEOLOGICO	4
2.1 Finalità e metodologia di studio	4
2.2 Contesto geologico di riferimento con preciso riferimento al progetto (§C 6.2.1)	5
2.2.1 Geologia di area vasta	5
2.2.2 Geomorfologia di area vasta	6
2.2.3 Dati sulla franosità storica dell'area	6
2.2.4 Idrogeologia dell'area vasta	6
2.2.5 Geomorfologia, idrologia ed idrogeologia di area ristretta (§ 6.2.1; § 7.11)	6
2.2.6 Dati sull'alluvionabilità dell'area (§ 5.1.2.4)	7
2.3 Analisi cartografia Piano di Bacino	7
2.3.1 Vincoli di normativa derivanti dalla pericolosità idrogeologica ed idraulica e di PRG	7
3.0 MODELLAZIONE GEOLOGICA (§ 6.2; § 6.2.1; § 6.12; § C 6.12)	8
3.1 Indagini geologiche	8
3.1.1 Piano delle indagini sulle terre o sulle rocce, in funzione degli obiettivi di progetto - (Criteri di	
indagine in relazione al tipo e alla complessità dell'opera) (§ 6.7.2; § 6.12.1; § 7.12.2)	8
3.1.2 Descrizioni degli standard di riferimento delle varie prove	8
3.2 Sintesi delle analisi condotte con valutazione sulla attendibilità dei risultati e delle ever	ıtuali
lifficoltà incontrate (§ 6.2.1; § 6.7.2; § 6.12; § 7.11.2)	10
3.2.1 Considerazioni generali sulla stabilità dei versanti (§ 6.3.2)	10
3.2.2 Modello geologico di sintesi per le verifiche di stabilità (§ 6.3.2; § C 6.3.2; § 6.3.3; § 6.3.4)	10
3.2.3 Verifiche di stabilità	11
3.3 Definizione degli elementi geologici e geomorfologici di pericolosità sismica locale (§6.7	7.2; §
5.12.1)	11
3.4 Valutazione dell'effetto di risposta sismica locale (RSL) per effetti stratigrafici (colonn	ıe
tratigrafiche) e/o morfologici (sezioni stratigrafiche) (§ 3.2.2)	11
3.5 Modello geologico di sintesi utile per la modellazione geotecnica (§ 6.2.1)	11

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

4.0 MODELLAZIONE SISMICA	12
4.1 Finalità e metodologia di studio	12
4.2 Sismicità storica	12
4.3 Pericolosità sismica di base (§ 3.2)	12
4.4 Azione sismica (§ 3.2.2; § 7.11.3)	13
4.4.1 Determinazione dell'approccio più idoneo ai fini della definizione dell'azione sismica derivar	ite dalla
valutazione dell'effetto di risposta sismica locale (RSL) (§ C 7.11.3.1.2.3)	13
4.4.2. Caratterizzazione dei terreni ai fini sismici (§ 7.11.2)	13
4.4.3. Approccio semplificato (§ 3.2.2; § 7.11.3.2; § 7.11.3.3)	14
4.4.3.1 Categoria di profilo stratigrafico del suolo di fondazione e amplificazione stratigrafica	14
4.4.3.2 Condizioni topografiche e amplificazione topografica	14
4.4.3.3 Spettro di risposta elastico	14
4.4.4 Liquefazione (§ 7.11.3.4)	16
5.0 MODELLAZIONE GEOTECNICA	16
5.1 Indagini geotecniche	16
5.1.1 Piano delle indagini in relazione agli obiettivi di progetto	16
5.2 Sintesi delle analisi condotte e valutazione sull'attendibilità dei risultati	17
5.2.1 Considerazioni generali sull'affidabilità delle indagini	17
5.2.2 Modello geotecnico di dettaglio	17
5.2.3 Fondazioni – Prescrizioni	18
5.2.4 Fondazioni – Cedimenti fondali	18
6.0 CONCLUSIONI E PRESCRIZIONI	18
6.2.1 Prescrizioni generali (§ 6.1.2; § 6.12; § 6.12.1)	18
6.2.2 Prescrizioni per prevenire l'alterabilità dei suoli	18
ALLEGATI	20

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

PREMESSA

Su commissione della Soc. WILSIDER S.p.a., è stata svolto uno studio geologico, idrogeologico, geotecnico e sismico finalizzato alla caratterizzazione geologica del sito e definizione della pericolosita' sismica di base per il «PROGETTO PER L'AMPLIAMENTO MAGAZZINO PER PRODOTTI SIDERURGICI - Zona Ind.le Miralduolo".

L'area in esame risulta ubicata nel Comune di Torgiano, Frazione Miralduolo, F° 5 - Partt. 501-505.

Si allegano alla presente relazione:

- Inquadramento cartografico e quadro di riferimento geomorfologico:
 - Allegato 1: Estratto C.T.R.;
 - Allegato 2: Planimetria catastale con ubicazione delle indagini geofisiche;
 - Allegato 3: Pianta di progetto con ubicazione delle indagini geognostiche;
- Inquadramento stratigrafico e quadro di riferimento geologico e idrogeologico:
 - Allegato 4: Interpretazione stratigrafica sondaggi penetrometrici;
 - Allegato 5: Sezione geologica di progetto;

- Modello sismico

- Allegato 6: Indagine sismica MASW;

- Modello geotecnico:

- Allegato 7: Elaborazione dati penetrometrici – Parametri minimi e medi.

1.1 INTERVENTO IN PROGETTO

In progetto è previsto l'ampliamento di un magazzino per prodotti siderurgici.

2.0 STUDIO GEOLOGICO

2.1 FINALITÀ E METODOLOGIA DI STUDIO

Il presente studio è finalizzato alla definizione delle caratteristiche stratigrafiche, idrogeologiche e sismiche dell'area in esame finalizzate al progetto esecutivo delle opere in progetto.

Studio di geologia **Dr. Geol. Simone SFORNA**

Albo O.R.G.U. n. 112

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

Tali dati sono stati ricavati sulla base di un piano di indagini geognostiche (prove penetrometriche statiche e dinamiche), idrogeologiche (rilievi piezometrici), e sismiche (prove sismiche MASW), integrate dai dati di correlazione derivanti da pregresse indagini geognostiche e geotecniche eseguita dallo scrivente per la realizzazione dell'edificio industriale in aderenza.

2.2 CONTESTO GEOLOGICO DI RIFERIMENTO CON PRECISO RIFERIMENTO AL PROGETTO (§C 6.2.1)

2.2.1 Geologia di area vasta

L'area in studio, ben conosciuta dal punto di vista geologico, si inserisce alla periferia Nord dell'abitato di Miraduolo, al margine della pianura alluvionale del fiume Tevere.

La pianura è impostata all'interno di una depressione di origine tettonica a graben, colmata in superficie da Depositi alluvionali terrazzati (*Olocene-Pleistocene*), a prevalente componente limo-sabbiosa.

Al di sotto è presente un potente livello di Depositi di origine Fluvio-lacustre (*Villafranchiano*), costituito in superficie da argille e argille limose azzurre alternate a depositi a granulometria variabile, in stato sovraconsolidato.

Nell'area in studio, il basamento litoide si colloca a profondità superiori ai 100 m dal piano campagna. I terreni di copertura sono costituiti dall'alto verso il basso da:

Livello "A" - Terreno di riporto:

si tratta di terreno di riporto decompresso a prevalente componente limo-argillosa con rari clasti sovrastato da esigui spessori di massicciata costipata e/o copertura bituminosa.

Il livello, a basso e/o bassissimo grado di addensamento, risulta non idoneo come terreno fondale; il suo spessore raggiunge i m 1.40 dal piano campagna. In fase esecutiva si prescrive di verificare con attenzione che le opere fondali appoggino direttamente sui sottostanti terreni in situ, superando gli spessori di terreno di riporto rilevato e anche gli eventuali sottoservizi presenti.

Livello "B" - Depositi alluvionali - Limi argillosi e argille limose:

il livello "B" è costituito da depositi alluvionali terrazzati; tale livello si presenta a prevalente componente limo-argillosa.

Si tratta di terreni in stato di media consistenza e/o addensamento, normalmente consolidati e mediamente compressibili.

Tale livello è presente fino alle profondità di m 8.20-8.60 dal piano campagna e andrà a costituire il piano fondale dell'ampliamento in progetto.

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

Livello "C" - Depositi alluvionali - Limi sabbio-argillosi:

il livello "C", costituisce un livello di debole spessore (inferiore a 1.0 m); si tratta di termini a prevalente componente limo-sabbiosa, in stato di medio-elevato addensamento e/o consistenza.

Il livello si presenta leggermente sovraconsolidato.

Tali terreni risultano da mediamente a poco compressibili.

Livello "D" - Depositi alluvionali - Ghiaie sabbiose:

il livello "D", risulta costituito da prevalenti ghiaie sabbiose, in stato di medio-elevato addensamento e/o consistenza.

Tali terreni risultano poco compressibili.

2.2.2 Geomorfologia di area vasta

L'area in esame si inserisce ai margini della pianura alluvionale del fiume Tevere, situata circa 1.0 Km a Nord dell'abitato di Miralduolo, in località Zona Industriale (All. 1 – C.T.R.).

Le quote topografiche si aggirano intorno a m 200 s.l.m. e l'area, sub-pianeggiante, si presenta in condizioni di assoluta stabilità.

Il sito identificato per l'ampliamento in progetto, è stato in passato oggetto di terrazzamento artificiale, al fine di ricavare un piazzale totalmente pianeggiante.

2.2.3 Dati sulla franosità storica dell'area

Nel contesto geomorfologico esistente, il rischio di frana risulta assente.

2.2.4 Idrogeologia dell'area vasta

Le misurazioni eseguite nel rilievo della piezometria locale, mostrano che il livello piezometrico si colloca alla profondità di circa m 16,50 dal piano campagna.

2.2.5 Geomorfologia, idrologia ed idrogeologia di area ristretta (§ 6.2.1; § 7.11)

Tutta l'area in studio risulta a debolissima pendenza e non si evidenziano elementi geomorfologici di rilievo.

Il drenaggio superficiale avviene in direzione Ovest mediante una rete di canalizzazioni naturali e artificiali verso il limitrofo Fiume Tevere.

Dal punto di vista idrogeologico, la falda presente si colloca al momento del rilievo alla profondità di circa 16.50 m dal piano campagna attuale.

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

2.2.6 Dati sull'alluvionabilità dell'area (§ 5.1.2.4)

L'area in esame risulta collocata esternamente rispetto alle alluvionali così come identificate dal P.A.I. (Piano Assetto Idrogeologico); si riporta la relativa cartografia in esame.

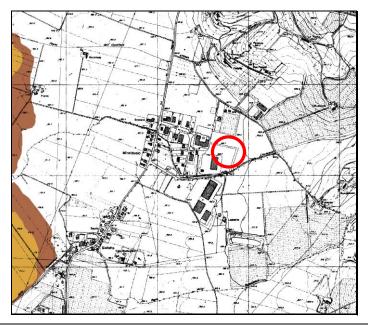


Fig. 1 – Estratto P.A.I – Rischio Idraulico

2.3 ANALISI CARTOGRAFIA PIANO DI BACINO

Oltre a quanto riportato nel precedente capitolo a riguardo del rischio idraulico, viene omessa anche la cartografia del Piano di Bacino relativo al rischio di frana per assenza di rischio.

2.3.1 Vincoli di normativa derivanti dalla pericolosità idrogeologica ed idraulica e di PRG

Nel lotto in progetto non insistono vincoli di ordine idrogeologico da PRG.

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

3.0 MODELLAZIONE GEOLOGICA (§ 6.2; § 6.2.1; § 6.12; § C 6.12)

3.1 INDAGINI GEOLOGICHE

3.1.1 Piano delle indagini sulle terre o sulle rocce, in funzione degli obiettivi di progetto - (Criteri di indagine in relazione al tipo e alla complessità dell'opera) (§ 6.7.2; § 6.12.1; § 7.12.2)

Le indagini eseguite hanno come obiettivo la ricostruzione dell'assetto litostratigrafico e geotecnico di massima dell'area, nonché quello della valutazione delle caratteristiche di risposta sismica dell'area; il tutto finalizzato alla progettazione esecutiva delle opere in progetto.

In relazione alle dimensioni dell'opera ed alla continuità litologica dell'area, si è optato per l'esecuzione di n. 1 prova penetrometrica dinamica e di n. 2 prove penetrometriche statiche (tale indagine era già stata eseguita in fase di progettazione della porzione di edificio esistente).

Dal punto di vista sismico si è optato per l'esecuzione di n. 1 indagine sismica tipo MASW, finalizzata al rilievo delle Vs30.

3.1.2 Descrizioni degli standard di riferimento delle varie prove

PENETROMETRO STATICO

Le indagini geognostiche sono state eseguite mediante penetrometro statico-dinamico PAGANI TG 63/200, con le seguenti caratteristiche:

PENETROMETRO STATICO OLANDESE tipo GOUDA (tipo meccanico).

Caratteristiche:

- punta conica meccanica 35.7 mm, angolo di apertura €=60 € -(area punta Ap = 10 cm,)
- manicotto laterale di attrito tipo 'Begemann' (35.7 mm h 133 mm sup. lat. Am. = 150 cm,)
- velocit f di avanzamento costante V = 2 cm / sec (0,5 cm/sec)
- spinta max nominale dello strumento Smax variabile a seconda del tipo
- costante di trasformazione (lett., Spinta) Ct = SPINTA (Kg) / LETTURA DI CAMPAGNA

fase 1 - resistenza alla punta qc (Kg/cm₂) = (L. punta) Ct/10

fase 2 - resistenza laterale locale fs (Kg / cm,) = [(L. laterale) - (L. punta)] Ct / 150

fase 3 - resistenza totale Rt (Kg) = (L. totale) Ct

qc / fs = 'rapporto Begemann'

- L. punta = lettura di campagna durante l,, infissione della sola punta (fase 1)
- L. laterale = lettura di campagna relativa all, infissione di punta e manicotto (fase 2)
- = lettura di campagna relativa all, infissione delle aste esterne (fase 3)

PENETROMETRO DINAMICO

CARATTERISTICHE TECNICHE: TG 63-200 ISM.C

peso massa battente m = 63,50 kgaltezza caduta libera h = 0.75 mpeso sistema battuta ms = 0,63 kg diametro punta conica d = 51,00 mm area base punta conica $a = 20,43 \text{ cm}^2$

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

angolo apertura punta $a=90\,^\circ$ lunghezza delle aste la = 1,00 m peso aste per metro ma = 6,31 kg prof. giunzione 1ª asta p1 = 0,40 m avanzamento punta d = 0,20 m numero di colpi punta n = n(20) relativo ad un avanzamento di 20 cm rivestimento / fanghi no energia specifica x colpo q = (mh)/(ad) = 11,66 kg/cm²(prova spt : qspt = 7.83 kg/cm²) coeff.teorico di energia bt = Q/Qspt = 1,489 (teoricamente : Nspt = bt N)

L'indagine sismica MASW è stata condotta mediante sismografo Do.re.mi., prodotto dalla Ditta SARA

Electronic Instruments S.r.l., con le seguenti specifiche tecniche:

Architettura

Classe strumentale: sismografo multicanale per geofisica Topologia: rete differenziale RS485 half-duplex multipoint

Lunghezza massima della rete: 1200 metri senza ripetitori (virtualmente illimitata con ripetitori)

Numero massimo di canali per tratta: 255

Dimensioni dell'elemento (esculso il cavo): 80x55x18 mm Peso: 250 g (un elemento con lunghezza cavo 5 metri)

Cavo: 4 conduttori, 2 coppie ritorte, robotico resistente a torsioni,

flesso-torsioni, abrasioni ed agenti chimici

Campionamento

Memoria: 64 kByte (>30000 campioni)

Frequenze in Hz: 200,300,400,500,800,1000,2000,3000,4000, 8000,10000,20000 pari ad intervalli in ms di: 5, 3.33, 2.5, 2, 1,25, 1, 0.5, 0.33, 0.25, 0.125, 0.1, 0.05

Esempi di utilizzo della memoria: ReMi: 500Hz, t-max 60 secondi

MASW: 4000Hz, t-max 7.5 secondi Riflessione: 20000Hz, t-max 1.5 secondi

Dinamica del sistema

Risoluzione con guadagno 10x: 7.600 μV Risoluzione con guadagno 1000x: 0.076 μV

Dinamica di base: 96dB (16 bit)

Dinamica massima del preamplificatore: 80dB Signal to Noise Ratio RMS fra 0.5 e 30Hz: >90dB

Full range a 10x: 0.5V p-p

Risoluzione RMS a 1000x e 4000SPS: 0.0000002V p-p

Dinamica totale teorica: 155dB

Dinamica totale senza postprocessing: > 127dB (a qualsiasi frequenza di campionamento)

Dinamica totale in postprocessing: >140dB

Alimentazione

Tensione di alimentazione: 10-15VdC

Consumo:

Unità di testa: 20mA Per Canale: 40mA

Consumo totale 12 canali: 510mA

Convertitore A/D Tipologia: SAR Risoluzione: 16 bit Dinamica: 96 dB

Pramplificatore

Tipologia: ultra-low noise con ingresso differenziale Filtri: 3Hz passa alto 1 polo, 200Hz passa basso 4 poli

Guadagni: da 10x a 8000x

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

Reiezione di modo comune: >80dB

Diafonia (crosstalk): non applicabile (elementi singoli a trasmissione digitale)

Impedenza d'ingresso: >100k Ω

3.2 SINTESI DELLE ANALISI CONDOTTE CON VALUTAZIONE SULLA ATTENDIBILITÀ DEI RISULTATI E DELLE EVENTUALI DIFFICOLTÀ INCONTRATE (§ 6.2.1; § 6.7.2; § 6.12; § 7.11.2)

Le indagini eseguite hanno permesso di ricostruire con sufficiente precisione, il modello geologico dell'area entro il volume significativo.

I risultati ottenuti risultano attendibili in relazione alle dimensioni dell'opera in progetto.

3.2.1 Considerazioni generali sulla stabilità dei versanti (§ 6.3.2)

Nel contesto geomorfologico dell'area, il rischio di frana risulta assente.

3.2.2 Modello geologico di sintesi per le verifiche di stabilità (§ 6.3.2; § C 6.3.2; § 6.3.3; § 6.3.4)

Con riferimento alle Stratigrafie (Allegati 4 - 5), i terreni impegnati presentano la seguente successione stratigrafica di dettaglio:

Livello "A" - Terreno di riporto:

si tratta di terreno di riporto decompresso a prevalente componente limo-argillosa con rari clasti sovrastato da esigui spessori di massicciata costipata e/o copertura bituminosa.

Il livello, a basso e/o bassissimo grado di addensamento, risulta non idoneo come terreno fondale; il suo spessore raggiunge i m 1.40 dal piano campagna. In fase esecutiva si prescrive di verificare con attenzione che le opere fondali appoggino direttamente sui sottostanti terreni in situ, superando gli spessori di terreno di riporto rilevato e anche gli eventuali sottoservizi presenti.

Livello "B" - Depositi alluvionali - Limi argillosi e argille limose:

il livello "B" è costituito da depositi alluvionali terrazzati; tale livello si presenta a prevalente componente limo-argillosa.

Si tratta di terreni in stato di media consistenza e/o addensamento, normalmente consolidati e mediamente compressibili.

Tale livello è presente fino alle profondità di m 8.20-8.60 dal piano campagna e andrà a costituire il piano fondale dell'ampliamento in progetto.

Livello "C" - Depositi alluvionali - Limi sabbio-argillosi:

il livello "C", costituisce un livello di debole spessore (inferiore a 1.0 m); si tratta di termini a prevalente componente limo-sabbiosa, in stato di medio-elevato addensamento e/o consistenza.

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

Il livello si presenta leggermente sovraconsolidato.

Tali terreni risultano da mediamente a poco compressibili.

Livello "D" - Depositi alluvionali - Ghiaie sabbiose:

il livello "D", risulta costituito da prevalenti ghiaie sabbiose, in stato di medio-elevato addensamento e/o consistenza.

Tali terreni risultano poco compressibili.

3.2.3 Verifiche di stabilità

Le verifiche di stabilità vengono omesse per assenza di pendenze naturali e artificiali (scavi in progetto).

3.3 DEFINIZIONE DEGLI ELEMENTI GEOLOGICI E GEOMORFOLOGICI DI PERICOLOSITÀ SISMICA LOCALE (§6.7.2; § 6.12.1)

L'indagine condotta esclude per l'area in esame la presenza di elementi di rischio geologicogeomorfologici nei confronti della pericolosità sismica locale.

Le pendenze risultano estremamente contenute; la stratigrafia rilevata non presenta contrasti di impedenza degni di nota entro i primi 30 m (profondità indagata dalle indagini sismiche).

Le indagini eseguite hanno inoltre permesso di ricostruire il modello geologico sopra riportato, costituito da livelli litologici omogeni.

3.4 VALUTAZIONE DELL'EFFETTO DI RISPOSTA SISMICA LOCALE (RSL) PER EFFETTI STRATIGRAFICI (COLONNE STRATIGRAFICHE) E/O MORFOLOGICI (SEZIONI STRATIGRAFICHE) (§ 3.2.2)

L'indagine condotta esclude per l'area in esame la presenza di elementi di rischio geologico-morfologici che possano incidere negativamente sulla risposta sismica locale.

3.5 MODELLO GEOLOGICO DI SINTESI UTILE PER LA MODELLAZIONE GEOTECNICA (§ 6.2.1)

Il modello geologico di sintesi utilizzabile per la modellazione geotecnica è lo stesso riportato al punto 3.2.2.

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

4.0 MODELLAZIONE SISMICA

4.1 FINALITÀ E METODOLOGIA DI STUDIO

La modellazione sismica dell'area è stata eseguita partendo dal dato della sismicità storica dell'area, la definizione della massima Magnitudo attesa, l'indagine in sito per la definizione della stratigrafia sismica locale in termini di Vs30.

La stratigrafia sismica è stata ricavata mediante un'indagine MASW.

L'indagine sismica è riportata in Allegato 5.

4.2 SISMICITÀ STORICA

La consultazione del catalogo dei terremoti storici (dal 212 a.c. al 2002) con epicentri entro Km 15,0 dall'area in esame (reperiti dal sito internet http://www.portaleabruzzo.com), evidenzia, per il sito indagato, la presenza di possibili sorgenti capaci di generare sismi con valori di Magnitudo < 5,8 distanti comunque dal sito progettuale.

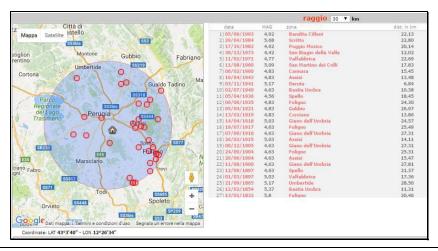


Fig. 2 – Terremoti storici

4.3 PERICOLOSITÀ SISMICA DI BASE (§ 3.2)

Dai dati strutturali e sismici a disposizione reperiti dal progetto DISS (Database of Individual Seismogenic Sources dell'Istituto Nazione di Sismica e Vulcanologia I.N.G.V, (catalogo delle sorgenti sismiche singolo o composite capaci di generare sismi con Magnitudo > 5.5) emerge che l'area in studio ricade esternamente a Composit Sources (ITCS, in arancio) ed esternamente a Individual Source (ITIS, rettangoli con perimetro in giallo), come sotto visibile.

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

Fig. 3 – Progetto Diss

Per quanto concerne pertanto la stima e valutazione dei massimi valori di Magnitudo associabili al sito, a seguito di attività di sorgenti sismogenetiche limitrofe al sito progettuale, vengono utilizzati anche i dati relativi alla Zonazione sismo genetica ZS9. L'area in esame ricade all'interno della Zona n. 920 cui compete una Magnitudo $M_{wmax} = 6.14$.

4.4 AZIONE SISMICA (§ 3.2.2; § 7.11.3)

4.4.1 Determinazione dell'approccio più idoneo ai fini della definizione dell'azione sismica derivante dalla valutazione dell'effetto di risposta sismica locale (RSL) (§ C 7.11.3.1.2.3)

I risultati delle indagini sismiche eseguite hanno permesso di ricostruire una stratigrafia sismica caratterizzata dall'assenza di contrasti di impedenze sismiche significative e la contemporanea presenza di terreni caratterizzati da graduale miglioramento delle proprietà meccaniche con la profondità.

La definizione dell'azione sismica può essere quindi definita mediante l'"Approccio semplificato".

4.4.2. Caratterizzazione dei terreni ai fini sismici (§ 7.11.2)

Dal punto di vista sismica, i terreni di copertura presenti entro 30 m (Depositi alluvionali terrazzati), non presentano caratteristiche di Bed-rock sismico; tale Bed-rock si viene a collocare a profondità superiori ai 100 m dal piano campagna e risulta costituito dalla formazione miocenica della Marnoso-arenacea.

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

4.4.3. Approccio semplificato (§ 3.2.2; § 7.11.3.2; § 7.11.3.3)

La definizione dell'azione sismica viene definita in base all'approccio semplificato, sulla base del valore delle Vs30 ricavato dall'indagine sismica tipo MASW.

4.4.3.1 Categoria di profilo stratigrafico del suolo di fondazione e amplificazione stratigrafica

L'indagine sismica eseguita (Allegato 6) ha restituito un valore delle Vs30 pari a circa 262 m/s.

In relazione al D.M. 14.01.2008 e Succ. Mod., i terreni presenti possono essere inseriti entro la seguente categoria di suolo di fondazione:

Suolo di tipo C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 < 50 nei terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina).

4.4.3.2 Condizioni topografiche e amplificazione topografica

Circa i coefficienti di amplificazione legati alle condizioni topografiche del sito, in relazione alla sottostante tabella, l'area può essere classificata nella Categoria T1.

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

4.4.3.3 Spettro di risposta elastico

In conformità con il D.M. 14.01.2008 "Norme tecniche per le costruzioni", sono stati identificati i parametri sismici del sito sulla base delle coordinate.

I dati completi vengono riportati di seguito.

Tabella 3.2.IV - Categorie topografiche

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

Parametri sismici

Parametri sismici		
Tipo di elaborazione: Muro rigido: 0	Stabilità dei pendii	
Sito in esame. latitudine: 43,06567 longitudine: 12,451069 Classe: Vita nominale:	2 50	
Siti di riferimento ID: 23183 Sito 2 ID: 23184 Sito 3 ID: 23406 Sito 4 ID: 23405	Lat: 43,0797Lon: 12,39 Lat: 43,0804Lon: 12,46 Lat: 43,0304Lon: 12,46 Lat: 43,0297Lon: 12,39	33 Distanza: 1909,633 41 Distanza: 4068,283
Parametri sismici Categoria sottosuolo: Categoria topografica: Periodo di riferimento: Coefficiente cu:	C T1 50anni	
Operatività (SLO): Probabilità di superament Tr: ag: Fo: Tc*:	to: 81	% 30 [anni] 0,064 g 2,466 0,269 [s]
Danno (SLD): Probabilità di superament Tr: ag: Fo: Tc*:	to: 63	% 50 [anni] 0,081 g 2,438 0,277 [s]
Salvaguardia della vita (S Probabilità di superament Tr:		% 475 [anni]

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

ag: Fo: Tc*:				0,195 g 2,420 0,308	[s]
	one dal collass tà di superame		5	% 975 0,246 g 2,449 0,318	[anni]
Coefficienti Si: SLO: SLD:	Ss: Cc: St: Kh: Kv: Amax: Beta: Ss: Cc:	1,500 1,620 1,000 0,019 0,010 0,939 0,200 1,500 1,600			
SLV:	St: Kh: Kv: Amax: Beta: Ss: Cc:	1,000 0,024 0,012 1,185 0,200 1,420 1,550			
SLC:	St: Kh: Kv: Amax: Beta:	1,000 0,067 0,033 2,717 0,240			
	Cc: St: Kh: Kv: Amax: Beta:	1,530 1,000 0,092 0,046 3,238 0,280			

Le coordinate espresse in questo file sono in $\ensuremath{\mathsf{ED50}}$

4.4.4 Liquefazione (§ 7.11.3.4)

La verifica a liquefazione dei terreni viene omessa in relazione all'assenza di falda idrica entro i primi 15 m dal piano campagna (7.11.3.4.2).

5.0 MODELLAZIONE GEOTECNICA

5.1 INDAGINI GEOTECNICHE

5.1.1 Piano delle indagini in relazione agli obiettivi di progetto

Le indagini geotecniche eseguite hanno come obiettivo la ricostruzione dei parametri geotecnici dei singoli livelli litologici presenti.

A tale scopo sono stati elaborati i dati relativi alle prove penetrometriche statiche e dinamiche.

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

5.2 SINTESI DELLE ANALISI CONDOTTE E VALUTAZIONE SULL'ATTENDIBILITÀ DEI RISULTATI

5.2.1 Considerazioni generali sull'affidabilità delle indagini

Le indagini eseguite hanno permesso di ricostruire con sufficiente precisione, le caratteristiche geotecniche dei livelli litologici principali presenti entro il volume significativo.

5.2.2 Modello geotecnico di dettaglio

Tutti i parametri geotecnici ricavati dalle prove penetrometriche, sono stati elaborati statisticamente al fine di rilevare per ciascun livello, il valore medio (grandi superfici di rottura) e minimo (piccole superfici di rottura) relativi ai vari livelli litologici rilevati (Allegato 7).

Di seguito per ciascun livello vengono riportati i principali parametri geotecnici medi dalla stratigrafia DPSH. 1 e CPT.2.

PARAMETRI GEOTECNICI MEDI DPSH. 1

Spessore	Peso	Peso	Angolo di	Coesione	Coesione	Modulo	Modulo	Poisson	Descrizio
strato	unità di	unità di	attrito	[Kg/cm ²]	non	Elastico	Edometri		ne
[m]	volume	volume	[°]		drenata	[Kg/cm ²]	co		
	$[Kg/m^3]$	saturo			[Kg/cm ²]		[Kg/cm ²]		
		$[Kg/m^3]$							
1,4	1770,0	1930,0	31,17	0,0	1,42	109.90	117.35	0,33	Livello 1
6,8	1650,0	1900,0	30,16	0,0	68.15	0,0	80.33	0,34	Livello 2
0,6	1740,0	1920,0	30,88	0,0	97.94	126,45	106.74	0,33	Livello 3
0,8	2320,0	2380,0	45,7	0,0	706.52	391,05	646.50	0,23	Livello 4

PARAMETRI GEOTECNICI MEDI CPT. 2

Spessore	Peso	Peso	Angolo di	Coesione	Coesione	Modulo	Modulo	Descrizio
strato	unità di	unità di	attrito	[Kg/cm ²]	non	Elastico	Edometri	ne
[m]	volume	volume	[°]		drenata	[Kg/cm ²]	co	
	$[Kg/m^3]$	saturo			[Kg/cm ²]		[Kg/cm ²]	
		$[Kg/m^3]$						
1,4	1930,55	2010,55	41,56	0,0	0,78	39,17	48,2	Livello 1
7,0	2090,04	2170,04	35,67	0,0	2,06	102,86	82,28	Livello 2
0,8	2113,59	2193,59	32,88	0,0	2,4	120,0	96,0	Livello 3
0,8	2349,67	2429,67	40,46	0,0	9,51	475,63	380,49	Livello 4

Studio di geologia **Dr. Geol. Simone SFORNA**

Albo O.R.G.U. n. 112

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

5.2.3 Fondazioni – Prescrizioni

I dati ricavati mostrano che le opere fondali potranno essere realizzate mediante fondazioni dirette, superando gli spessori di terreno vegetale e di riporto evidenziati, oltre agli eventuali sottoservizi interrati presenti, poggiando direttamente sui terreni in sito del livello B.

In conformità con il D.M. 14.01.2008 "Norme tecniche per le costruzioni" e Succ. Mod. ed Int., il calcolo della capacità portante e dei relativi cedimenti *andrà definito nell'ambito della relazione geotecnica esecutiva a corredo del progetto strutturale*, secondo i vari approcci e combinazioni utilizzate e tenendo conto dei reali carichi agenti sulle fondazioni (al momento non conosciuti).

5.2.4 Fondazioni – Cedimenti fondali

Così come per la capacità portante, anche il calcolo dei cedimenti andrà centrato sulla base dei reali carichi agenti sulla fondazione ed in funzione delle varie combinazioni di carico.

6.0 CONCLUSIONI E PRESCRIZIONI

6.2.1 Prescrizioni generali (§ 6.1.2; § 6.12; § 6.12.1)

I dati ricavati mostrano che le opere fondali potranno essere realizzate mediante fondazioni dirette, appoggiate ad una profondità minima di incastro non inferiore a m 1,40 *dal piano campagna esistente* e comunque superando gli spessori di terreno vegetale e di riporto evidenziati, oltre agli eventuali sottoservizi interrati presenti, poggiando direttamente sui terreni in sito del livello B.

6.2.2 Prescrizioni per prevenire l'alterabilità dei suoli

Oltre ai cedimenti da carico, si segnala altresì che i terreni presenti, possono manifestare variazioni di volume per variazione di umidità; in seguito a tali variazioni di volume si potrebbero quindi generare cedimenti di tutte le strutture sovrastanti, in maniera indipendente dai carichi trasmessi al terreno dalle stesse e che si andrebbero a sommare ai prevedibili cedimento da carico. Al fine di scongiurare tale evenienza si prescrive quindi di:

- non piantare alberi di alto o medio fusto nelle vicinanze delle opere fondali e/o eventualmente abbattere quelli esistenti;
- di porre particolare cura nella realizzazione delle opere di regimazione idrica delle acque bianche, nere e della rete idrica di adduzione, *curandone nel tempo l'efficienza e la funzionalità*;
 - di realizzare tutte le opere necessarie ad evitare ristagni idrici in superficie;

Studio di geologia Dr. Geol. Simone SFORNA

Albo O.R.G.U. n. 112

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

- di non modificare nel tempo la permeabilità delle aree limitrofe al fabbricato con opere quali pavimentazioni o similari.

La presente relazione è stata redatta in base allo "Standard minimo per la redazione della Relazione Geologica ai sensi delle NTC08" adottato dall'Ordine Regionale dei Geologi dell'Umbria con Delibera di Consiglio n. 37/11 del 11/07/2011.

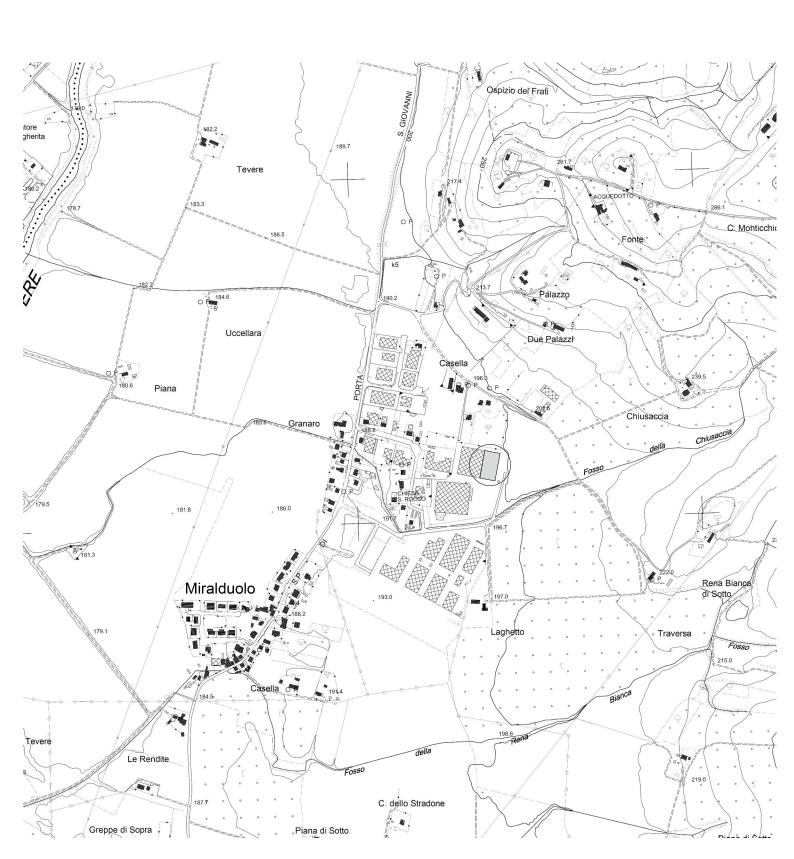
Torgiano, dicembre 2016

Dr. Geol. Simone SFORNA

Via Bastia, 2 - 06080 Brufa di Torgiano (PG) Tel. 075/9889301 - Cell. 347/3362235 - E-mail: simonesforna@tiscalinet.it

ALLEGATI

- Inquadramento cartografico e quadro di riferimento geomorfologico:
 - Allegato 1: Estratto C.T.R.;
 - Allegato 2: Planimetria catastale con ubicazione delle indagini geofisiche;
 - Allegato 3: Pianta di progetto con ubicazione delle indagini geognostiche;
- Inquadramento stratigrafico e quadro di riferimento geologico e idrogeologico:
 - Allegato 4: Interpretazione stratigrafica sondaggi penetrometrici;
 - Allegato 5: Sezione geologica di progetto;

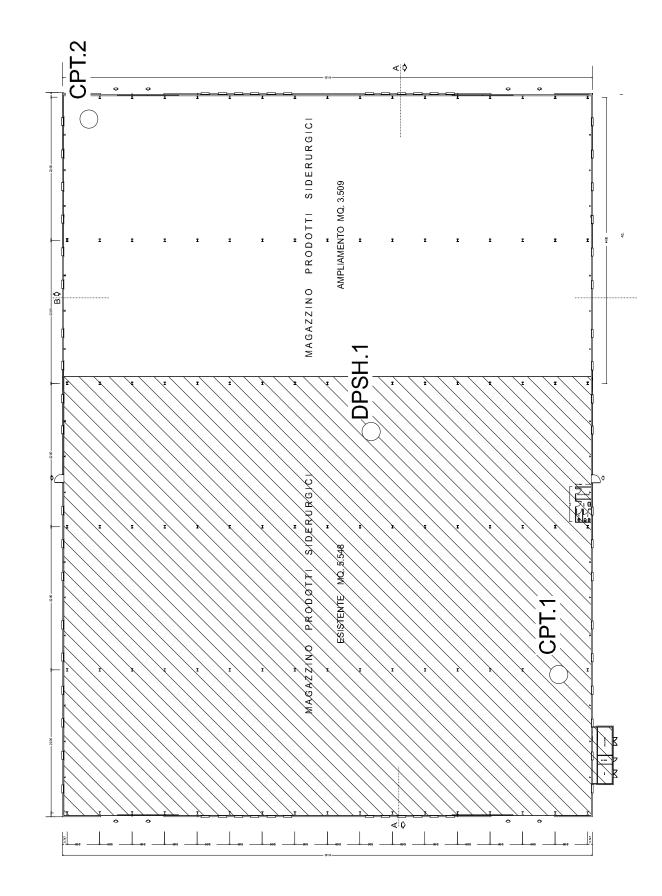

- Modello sismico

- Allegato 6: Indagine sismica MASW;

- Modello geotecnico:

- Allegato 7: Elaborazione dati penetrometrici – Parametri minimi e medi.

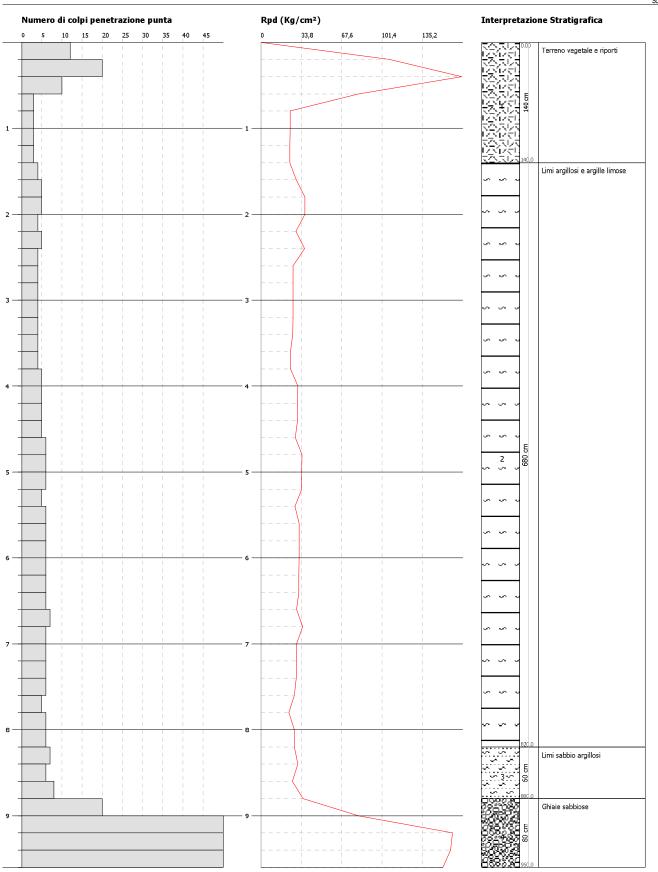
Allegato 1
ESTRATTO C.T.R.


Allegato 2

PLANIMETRIA CATASTALE CON UBICAZIONE INDAGINI GEOFISICHE F° 5 - Partt. 501-505 (Comune di Torgiano)

Allegato 3

PIANTA DI PROGETTO CON UBICAZIONE INDAGINI GEOGNOSTICHE F° 5 - Partt. 501-505 (Comune di Torgiano)

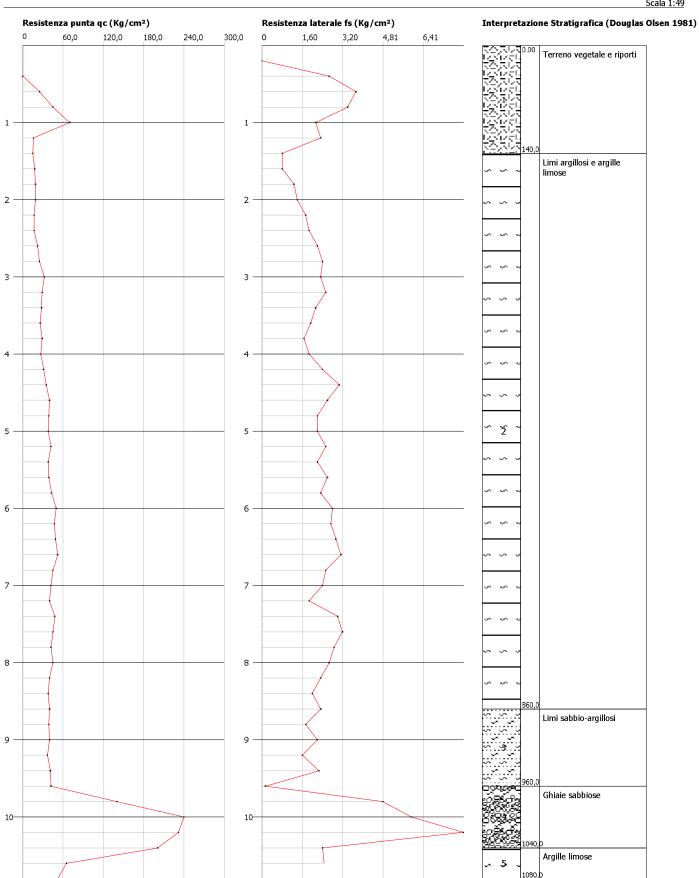


PROVA PENETROMETRICA DINAMICA Nr.1 Strumento utilizzato... DPSH TG 63-200 PAGANI DIAGRAMMA NUMERO COLPI PUNTA-Rpd

Committente: Wilsider Data:06/04/2007

Cantiere : Capannone industriale
Località : Miralduolo

Scala 1:44

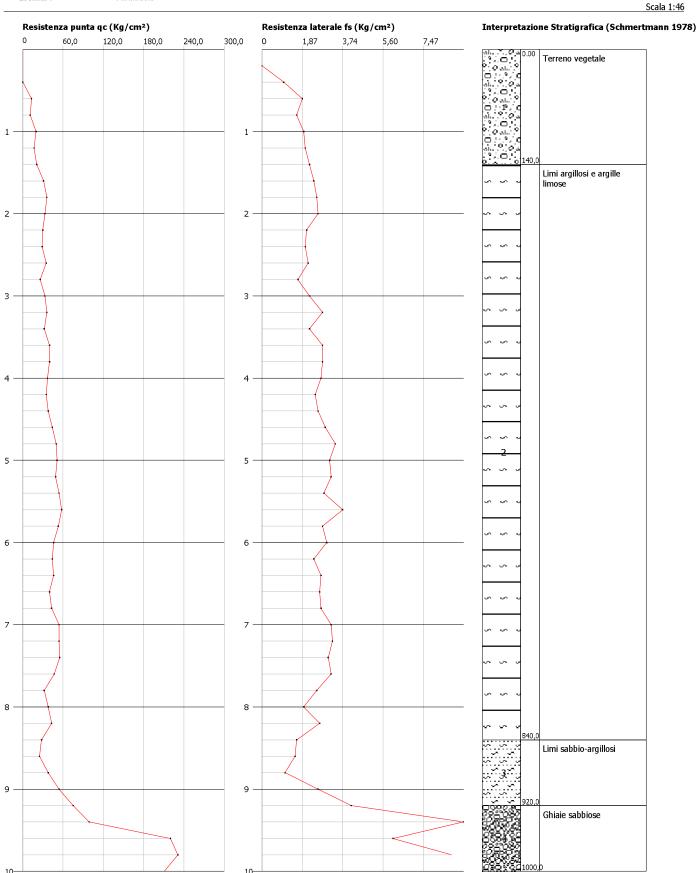

Profondità

Probe CPT - Cone Penetration CPT. 1 Strumento utilizzato... PAGANI 100 kN Diagramma Resistenze qc fs

Committente: Wilsider Data:06/04/2007

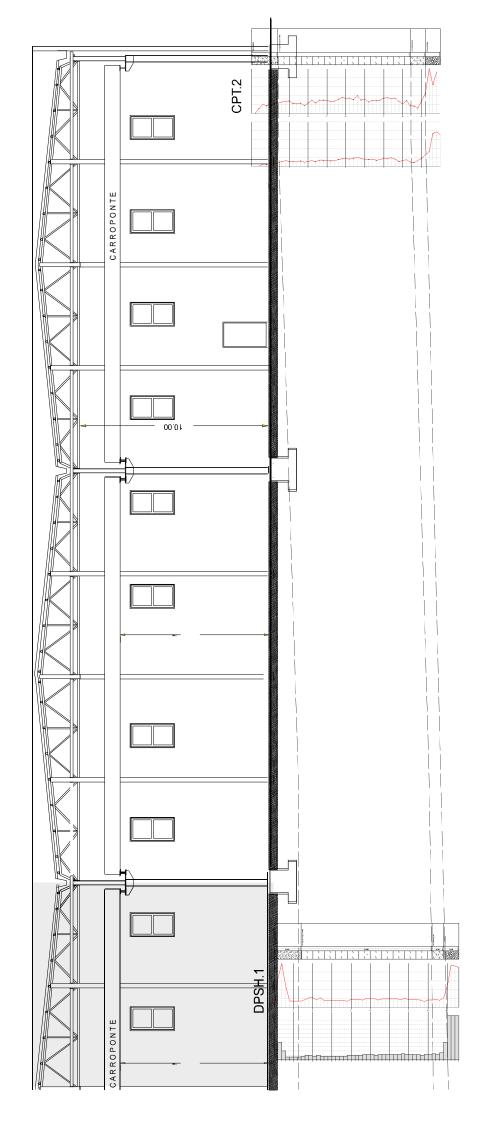
Realizzazione capannone industriale Miralduolo Cantiere : Località :

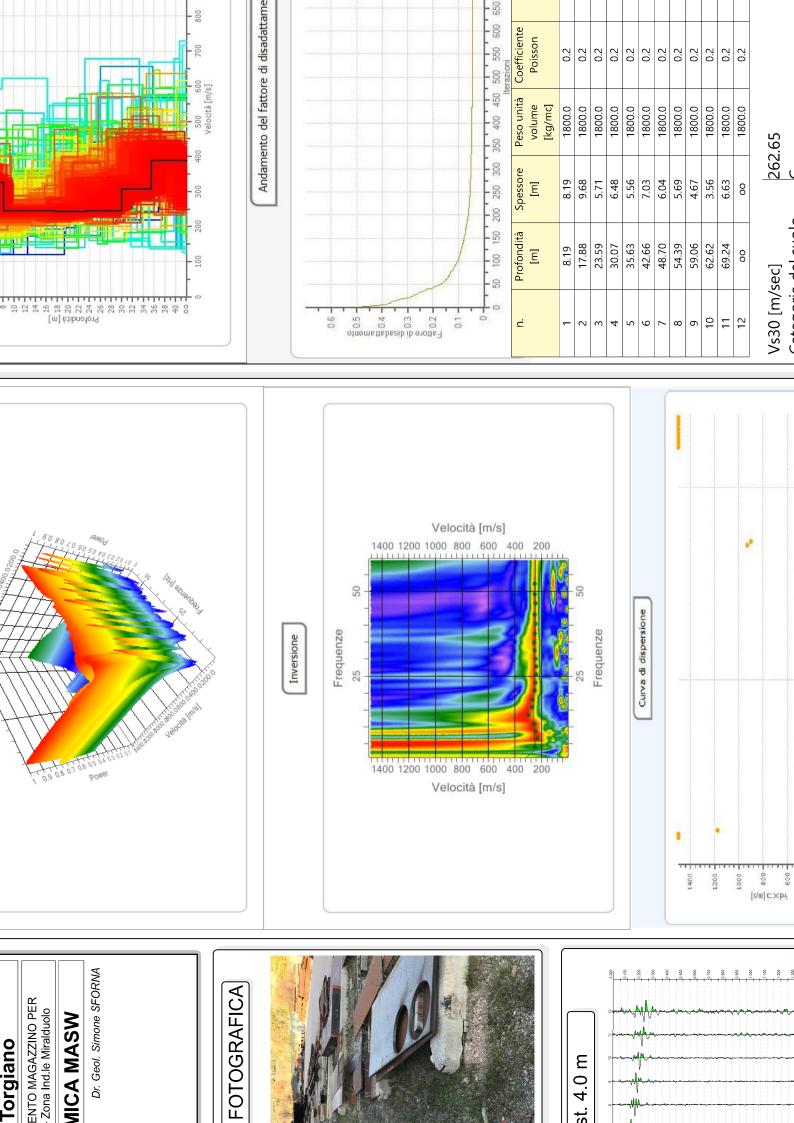
Scala 1:49



Profondità

Probe CPT - Cone Penetration CPT.2 Strumento utilizzato... PAGANI 100 kN Diagramma Resistenze qc fs


Committente: Wilsider Data:06/04/2007


Realizzazione capannone industriale Miralduolo Cantiere : Località :

Allegato 5

SEZIONE GEOLOGICA DI PROGETTO F° 5 - Partt. 501-505 (Comune di Torgiano)

PROVA PENETROMETRICA STATICA

Committente: Wilsider
Cantiere: Realizzazione capannone industriale
Località: Miralduolo

Caratteristiche Strumentali PAGANI 100 kN

Rif. Norme	ASTM D3441-86
Diametro Punta conica meccanica	35,7
Angolo di apertura punta	60
Area punta	10
Superficie manicotto	150
Passo letture (cm)	20
Costante di trasformazione Ct	10

PROVA ...CPT. 1

Committente: Wilsider Strumento utilizzato: PAGANI 100 kN Prova eseguita in data: 06/04/2007 Profondità prova: 10,80 mt Località: Miralduolo

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm²)	(Kg/cm ²)	(Kg/cm²)	(Kg/cm²)	Begemann	(Schmertmann)
0,20	0,00	0,0	0,0	0,0		
0,40	0,00	0,0	0,0	2,667	0,0	
0,60	25,00	65,0	25,0	3,733	6,697	14,9
0,80	45,00	101,0	45,0 3,4		13,235	7,6
1,00	70,00	121,0	70,0	2,133	32,818	3,0
1,20	16,00	48,0	16,0	2,333	6,858	14,6
1,40	15,00	50,0	15,0	0,8	18,75	5,3
1,60	18,00	30,0	18,0	0,8	22,5	4,4
1,80	19,00	31,0	19,0	1,267	14,996	6,7
2,00	19,00	38,0	19,0 1,4	,	13,571	7,4
2,20	17,00	38,0	17,0	1,733	9,81	10,2
2,40	17,00	43,0	17,0	1,867	9,106	11,0
2,60	22,00	50,0	22,0	2,2	10,0	10,0
2,80	25,00	58,0	25,0 2,4	,	10,417	9,6
3,00	32,00	68,0	32,0	2,333	13,716	7,3
3,20	29,00	64,0	29,0	2,533	11,449	8,7
3,40	28,00	66,0	28,0	2,133	13,127	7,6
3,60	26,00	58,0	26,0	1,933	13,451	7,4
3,80	29,00	58,0	29,0	1,667	17,397	5,7
4,00	27,00	52,0	27,0	1,867	14,462	6,9
4,20	31,00	59,0	31,0 2,4	-,	12,917	7,7
4,40	35,00	71,0	35,0	3,067	11,412	8,8
4,60	40,00	86,0	40,0 2,6		15,385	6,5
4,80	39,00	78,0	39,0 2,2		17,727	5,6
5,00	38,00	71,0	38,0 2,2		17,273	5,8
5,20	42,00	75,0	42,0	2,533	16,581	6,0
5,40	38,00	76,0	38,0 2,2	_,,,,,	17,273	5,8
5,60	39,00	72,0	39,0	2,6	15,0	6,7
5,80	43,00	82,0	43,0	2,333	18,431	5,4
6,00	50,00	85,0	50,0 2,8	_,	17,857	5,6
6,20	47,00	89,0	47,0	2,733	17,197	5,8
6,40	49,00	90,0	49,0	2,933	16,706	6,0
6,60	52,00	96,0	52,0	3,133	16,598	6,0
6,80	45,00	92,0	45,0	2,533	17,765	5,6
7,00	42,00	80,0	42,0	2,4	17,5	5,7
7,20	40,00	76,0	40,0	1,867	21,425	4,7
7,40	48,00	76,0	48,0	3,0	16,0	6,3
7,60	45,00	90,0	45,0 3,2	-,-	14,063	7,1
7,80	42,00	90,0	42,0	2,867	14,649	6,8
8,00	45,00	88,0	45,0	2,667	16,873	5,9
8,20	40,00	80,0	40,0	2,333	17,145	5,8
8,40	38,00	73,0	38,0	2,0	19,0	5,3
8,60	40,00	70,0	40,0	2,333	17,145	5,8
8,80	39,00	74,0	39,0	1,733	22,504	4,4
9,00	40,00	66,0	40,0 2,2	2,700	18,182	5,5
9,20	37,00	70,0	37,0 1,6		23,125	4,3
9,40	41,00	65,0	41,0	2,267	18,086	5,5
9,60	42,00	76,0	42,0	0,133	315,789	0,3
9,80	140,00	142,0	140,0 4,8	0,133	29,167	3,4
10,00	240,00	312,0	240,0	5,933	40,452	2,5
10,20	232,00	321,0	232,0	8,0	29,0	3,4
10,40	201,00	321,0	201,0	2,4	83,75	1,2
10,60	65,00	101,0	65,0	2,467	26,348	3,8
10,80	52,00	89,0	52,0	0,0	20,510	0,0
10,00	Z _ , 30	0,0	,·	٠,٠		٠,٥

	Prof. Strato (m)	qc (Minimo) (Kg/cm²)	fs Minima (Kg/cm²)	Gamma (Minimo) (t/m³)	Comp. Geotecnico	Descrizione
	1,40	0,0	0,0	0,0	Incoerente-Coesivo	Terreno vegetale e riporti
8,6		17,0	0,8 1,9		Incoerente-Coesivo	Limi argillosi e argille limose
	9,60	37,0	0,133		2,1 Incoerente-Coesivo	Limi sabbio argillosi
	10,40	140,0	2,4 2,3		Incoerente-Coesivo	Ghiaie sabbiose
	10,80	52,0	0,0 2,1		Incoerente-Coesivo	Argille limose

STIMA PARAMETRI GEOTECNICI MINIMI

TERRENI COESIV I

Coesione non d							
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Cu (Kg/cm²)
Strato 1	1,40	0,0	0,0	0,0	0,0	Terzaghi	0,0
Strato 2	8,60	17,0	0,8	0,7	0,7	Terzaghi	0,9
Strato 3	9,60	37,0	0,133	1,5	1,5	Terzaghi	1,9
Strato 4	10,40	140,0	2,4	1,7	1,7	Terzaghi	7,0
Strato 5	10,80	52,0	0,0	1,8	1,8	Terzaghi	2,6
Modulo Edome	etrico						
	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Eed
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		(Kg/cm²)
Strato 1	1,40	0,0	0,0	0,0	0,0	Metodo generale del modulo Edometrico	0,0
Strato 2	8,60	17,0	0,8	0,7	0,7	Metodo generale del modulo Edometrico	47,2
Strato 3	9,60	37,0	0,133	1,5	1,5	Metodo generale del modulo Edometrico	74,0
Strato 4	10,40	140,0	2,4	1,7	1,7	Metodo generale del modulo Edometrico	280,0
Strato 5	10,80	52,0	0,0	1,8	1,8	Metodo generale del modulo Edometrico	104,0

TERRENI INCOERENT I

Lioneita rolativ	a						
Densità relativ	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Densità relativa (%)
Strato 1 Strato 2 Strato 3 Strato 4 Strato 5	1,40 8,60 9,60 10,40 10,80	0,0 17,0 37,0 140,0 52,0	0,0 0,8 0,133 2,4 0,0	0,0 0,7 1,5 1,7 1,8	0,0 0,7 1,5 1,7 1,8	Harman Harman Harman Harman Harman	<5 20,3 28,5 71,2 35,3
Angolo di resis	stenza al taglio Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Angolo
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		d'attrito (°)
Strato 1	1,40	0,0	0,0	0,0	0,0	Robertson & Campanella 1983	0,0
Strato 2	8,60	17,0	0,8	0,7	0,7	Robertson & Campanella 1983	32,5
Strato 3	9,60	37,0	0,133	1,5	1,5	Robertson & Campanella 1983	32,6
Strato 4	10,40	140,0	2,4	1,7	1,7		39,8
Strato 5	10,80	52,0	0,0	1,8	1,8	Robertson & Campanella 1983	33,5
Modulo di You							
Modulo di You	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Modulo di Young (Kg/cm²)
Strato 1 Strato 2 Strato 3 Strato 4 Strato 5	Prof. Strato			litostatica	litostatica efficace (Kg/cm²) 0,0 0,7 1,5 1,7	Schmertmann Schmertmann Schmertmann Schmertmann Schmertmann	Young
Strato 1 Strato 2 Strato 3 Strato 4	Prof. Strato (m) 1,40 8,60 9,60 10,40 10,80 olume	0,0 17,0 37,0 140,0	0,0 0,8 0,133 2,4 0,0	litostatica totale (Kg/cm²) 0,0 0,7 1,5 1,7	litostatica efficace (Kg/cm²) 0,0 0,7 1,5 1,7	Schmertmann Schmertmann Schmertmann Schmertmann Schmertmann	Young (Kg/cm²) 0,0 42,5 92,5 350,0 130,0
Strato 1 Strato 2 Strato 3 Strato 4 Strato 5	1,40 8,60 9,60 10,40 10,80	0,0 17,0 37,0 140,0	0,0 0,8 0,133 2,4	litostatica totale (Kg/cm²) 0,0 0,7 1,5 1,7	litostatica efficace (Kg/cm²) 0,0 0,7 1,5 1,7	Schmertmann Schmertmann Schmertmann Schmertmann Schmertmann	Young (Kg/cm²) 0,0 42,5 92,5 350,0
Strato 1 Strato 2 Strato 3 Strato 4 Strato 5	Prof. Strato (m) 1,40 8,60 9,60 10,40 10,80 olume Prof. Strato	0,0 17,0 37,0 140,0 52,0	0,0 0,8 0,133 2,4 0,0	litostatica totale (Kg/cm²) 0,0 0,7 1,5 1,7 1,8 Tensione litostatica totale	litostatica efficace (Kg/cm²) 0,0 0,7 1,5 1,7 1,8 Tensione litostatica efficace	Schmertmann Schmertmann Schmertmann Schmertmann Schmertmann	Young (Kg/cm²) 0,0 42,5 92,5 350,0 130,0 Peso unità di volume (t/m³) 1,8 1,8 1,9 1,8
Strato 1 Strato 2 Strato 3 Strato 4 Strato 5 Peso unità di v Strato 1 Strato 2 Strato 3 Strato 4	Prof. Strato (m) 1,40 8,60 9,60 10,40 10,80 olume Prof. Strato (m) 1,40 8,60 9,60 10,40 10,80 olume saturo	0,0 17,0 37,0 140,0 52,0 qc (Kg/cm²) 0,0 17,0 37,0 140,0	(Kg/cm²) 0,0 0,8 0,133 2,4 0,0 fs (Kg/cm²) 0,0 0,8 0,133 2,4 0,0	totale (Kg/cm²) 0,0 0,7 1,5 1,7 1,8 Tensione litostatica totale (Kg/cm²) 0,0 0,7 1,5 1,7 1,8	litostatica efficace (Kg/cm²) 0,0 0,7 1,5 1,7 1,8 Tensione litostatica efficace (Kg/cm²) 0,0 0,7 1,5 1,7	Schmertmann Schmertmann Schmertmann Schmertmann Schmertmann Meyerhof Meyerhof Meyerhof Meyerhof Meyerhof	Young (Kg/cm²) 0,0 42,5 92,5 350,0 130,0 Peso unità di volume (t/m³) 1,8 1,8 1,9 1,8
Strato 1 Strato 2 Strato 3 Strato 4 Strato 1 Strato 1 Strato 2 Strato 3 Strato 4 Strato 5	Prof. Strato (m) 1,40 8,60 9,60 10,40 10,80 olume Prof. Strato (m) 1,40 8,60 9,60 10,40 10,80	0,0 17,0 37,0 140,0 52,0 qc (Kg/cm²) 0,0 17,0 37,0 140,0	(Kg/cm²) 0,0 0,8 0,133 2,4 0,0 fs (Kg/cm²) 0,0 0,8 0,133 2,4	litostatica totale (Kg/cm²) 0,0 0,7 1,5 1,7 1,8 Tensione litostatica totale (Kg/cm²) 0,0 0,7 1,5 1,7	litostatica efficace (Kg/cm²) 0,0 0,7 1,5 1,7 1,8 Tensione litostatica efficace (Kg/cm²) 0,0 0,7 1,5 1,7	Schmertmann Schmertmann Schmertmann Schmertmann Schmertmann Meyerhof Meyerhof Meyerhof Meyerhof Meyerhof	Young (Kg/cm²) 0,0 42,5 92,5 350,0 130,0 Peso unità di volume (t/m³) 1,8 1,8 1,9 1,8

Strato 4	10,40	140,0	2,4	1,7	1,7	Meyerhof	2,1
Strato 5	10,80	52,0	0,0	1,8	1,8	Meyerhof	2,2

STIMA PARAMETRI GEOTECNICI MEDI

TERRENI COESIV I

TERRENI CO Coesione non d							
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Cu (Kg/cm²)
Strato 1 Strato 2 Strato 3 Strato 4 Strato 5	1,40 8,60 9,60 10,40 10,80	24,429 35,444 39,8 203,25 58,5	2,152 2,307 1,587 5,283 1,234	0,1 1,0 1,8 2,0 2,2	0,1 1,0 1,8 2,0 2,2	Terzaghi Terzaghi Terzaghi Terzaghi Terzaghi	1,2 1,8 2,0 10,2 2,9
Modulo Edome							
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Eed (Kg/cm²)
Strato 1	1,40	24,429	2,152	0,1	0,1	Metodo generale del modulo Edometrico	48,9
Strato 2	8,60	35,444	2,307	1,0	1,0	Metodo generale del modulo Edometrico	70,9
Strato 3	9,60	39,8	1,587	1,8	1,8	Metodo generale del modulo Edometrico	79,6
Strato 4	10,40	203,25	5,283	2,0	2,0	Metodo generale del modulo Edometrico	406,5
Strato 5	10,80	58,5	1,234	2,2	2,2	Metodo generale del modulo Edometrico	117,0

TERRENI INCOERENT I

Densità relativa

Delisita felativa							
	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Densità
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica	litostatica		relativa
				totale	efficace		(%)
				(Kg/cm²)	(Kg/cm ²)		
Strato 1	1,40	24,429	2,152	0,1	0,1	Harman	77,8
Strato 2	8,60	35,444	2,307	1,0	1,0	Harman	37,2
Strato 3	9,60	39,8	1,587	1,8	1,8	Harman	25,9
Strato 4	10,40	203,25	5,283	2,0	2,0	Harman	79,4
Strato 5	10,80	58,5	1,234	2,2	2,2	Harman	35,0

Angolo di resist	enza al taglio						
ringolo di resist	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Angolo d'attrito (°)
Strato 1	1,40	24,429	2,152	0,1	0,1	Robertson & Campanella 1983	44,9
Strato 2	8,60	35,444	2,307	1,0	1,0	Robertson & Campanella	35,0
Strato 3	9,60	39,8	1,587	1,8	1,8	Robertson & Campanella 1983	31,6
Strato 4	10,40	203,25	5,283	2,0	2,0	Robertson & Campanella 1983	40,7
Strato 5	10,80	58,5	1,234	2,2	2,2	Robertson & Campanella 1983	33,0
Modulo di You							
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Modulo di Young (Kg/cm²)
Strato 1	1,40	24,429	2,152	0,1		Schmertmann	61,1
Strato 2 Strato 3	8,60 9,60	35,444 39,8	2,307 1,587	1,0 1,8		Schmertmann Schmertmann	88,6 99,5
Strato 4	10,40	203,25	5,283	2,0	2,0	Schmertmann	508,1
Strato 5	10,80	58,5	1,234	2,2	2,2	Schmertmann	146,3
Peso unità di vo	lume						
	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Peso unità di
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		volume (t/m³)
Strato 1	1,40	24,429	2,152	0,1	0,1	Meyerhof	1,8
Strato 2 Strato 3	8,60 9,60	35,444 39,8	2,307 1,587	1,0 1,8	1,0 1,8	Meyerhof Meyerhof	1,8 1,8
Strato 4	10,40	203,25	5,283	2,0	2,0	Meyerhof	1,8
Strato 5	10,80	58,5	1,234	2,2	2,2	Meyerhof	2,0
Peso unità di vo	lume saturo						
	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Peso unità di
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		volume saturo (t/m³)
Strato 1	1,40	24,429	2,152	0,1	0,1	Meyerhof Meyerhof	2,1
Strato 2 Strato 3	8,60 9,60	35,444 39,8	2,307 1,587	1,0 1,8	1,0 1,8	Meyerhof Meyerhof	2,1 2,1
Strato 4	10,40	203,25	5,283	2,0	2,0	Meyerhof	2,1
Strato 5	10,80	58,5	1,234	2,2	2,2	Meyerhof	2,2

PROVA ...CPT.2

Committente: Wilsider

Strumento utilizzato: PAGANI 100 kN Prova eseguita in data: 06/04/2007 Profondità prova: 10,00 mt

Località: Miralduolo

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	Begemann	(Schmertmann)
0,20	12,00	15,0	12,0	0,2	60,0	1,7
0,40	12,00	15,0	12,0	1,0	12,0	8,3
0,60	13,00	28,0	13,0	1,867	6,963	14,4
0,80	11,00	39,0	11,0	1,6	6,875	14,5
1,00	20,00	44,0	20,0	1,933	10,347	9,7
1,20	17,00	46,0	17,0	2,0	8,5	11,8
1,40	21,00	51,0	21,0	2,2	9,545	10,5
1,60	31,00	64,0	31,0 2,		12,917	7,7
1,80	36,00	72,0	36,0	2,533	14,212	7,0
2,00	33,00	71,0	33,0 2,		12,692	7,9
2,20	30,00	69,0	30,0	2,067	14,514	6,9
2,40	29,00	60,0	29,0	2,0	14,5	6,9
2,60	35,00	65,0	35,0	2,133	16,409	6,1
2,80	26,00	58,0	26,0	1,667	15,597	6,4
3,00	33,00	58,0	33,0	2,2	15,0	6,7
3,20	36,00	69,0	36,0 2,		12,857	7,8
3,40	32,00	74,0	32,0 2,		14,545	6,9
3,60	40,00	73,0	40,0 2,		14,286	7,0
3,80	40,00	82,0	40,0 2,		14,286	7,0
4,00	37,00	79,0	37,0	2,733	13,538	7,4
4,20	35,00	76,0	35,0	2,467	14,187	7,0
4,40	38,00	75,0	38,0 2,		14,615	6,8
4,60	44,00	83,0	44,0	2,933	15,002	6,7
4,80	50,00	94,0	50,0 3,		14,706	6,8
5,00	51,00	102,0	51,0	3,133	16,278	6,1
5,20	49,00	96,0	49,0 3,		15,313	6,5
5,40	54,00	102,0	54,0	2,867	18,835	5,3
5,60	58,00	101,0	58,0	3,733	15,537	6,4
5,80	53,00	109,0	53,0 2,		18,929	5,3
6,00	46,00	88,0	46,0 3,		15,333	6,5
6,20	44,00	89,0	44,0 2,		18,333	5,5
6,40	46,00	82,0	46,0	2,733	16,831	5,9
6,60	40,00	81,0	40,0	2,667	14,998	6,7
6,80	43,00	83,0	43,0	2,733	15,734	6,4
7,00	54,00	95,0	54,0 3,		16,875	5,9
7,20	54,00	102,0	54,0	3,267	16,529	6,1
7,40	55,00	104,0	55,0	3,067	17,933	5,6
7,60	47,00	93,0	47,0 3,		14,688	6,8
7,80	32,00	80,0	32,0	2,533	12,633	7,9
8,00	38,00	76,0	38,0	1,933	19,659	5,1
8,20	43,00	72,0	43,0	2,667	16,123	6,2
8,40	28,00	68,0	28,0	1,6	17,5	5,7
8,60	25,00	49,0	25,0 25,0	1,533	16,308	6,1
8,80	38,00	61,0	38,0	1,067	35,614	2,8
9,00	54,00	70,0	54,0 2,		20,769	4,8
9,00	75,00	114,0	75,0	4,133	18,147	5,5
9,20	99,00	161,0	99,0	9,333	10,608	9,4
9,40	220,00	360,0	220,0	9,333 6,067	36,262	2,8
9,80	231,00	322,0	231,0	8,8	26,25	3,8
10,00	211,00	343,0	231,0	0,0	20,23	0,0

Prof. Strato (m)	qc (Minimo) (Kg/cm²)	fs Minima (Kg/cm²)	Gamma (Minimo) (t/m³)	Comp. Geotecnico	Descrizione
1,40	11,0	1,0	1,8	Incoerente- Coesivo	Terrneo vegetale e riporti
8,40	26,0	1,6 2,0		Incoerente- Coesivo	Limi argillosi e argille limose
9,20	25,0	1,067		2,0 Incoerente- Coesivo	Limi sabbio- argillosi
10,00	99,0	0,0 2,0		Incoerente- Coesivo	Ghiaie sabbiose

STIMA PARAMETRI GEOTECNICI MINIMI

TERRENI COESIV I

Coesione	non	drenata

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Cu (Kg/cm²)
Strato 1	1,40	11,0	1,0	0,1	0,1	Terzaghi	0,6
Strato 2	8,40	26,0	1,6	1,0	1,0	Terzaghi	1,3
Strato 3	9,20	25,0	1,067	1,7	1,7	Terzaghi	1,3
Strato 4	10,00	99,0	0,0	1,9	1,9	Terzaghi	5,0

Modulo Edometrico

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Eed (Kg/cm²)
Strato 1	1,40	11,0	1,0	0,1	0,1	Metodo generale del modulo Edometrico	45,4
Strato 2	8,40	26,0	1,6	1,0	1,0	Metodo generale del modulo Edometrico	52,0
Strato 3	9,20	25,0	1,067	1,7	1,7	Metodo generale del modulo Edometrico	50,0
Strato 4	10,00	99,0	0,0	1,9	1,9	Metodo generale del modulo Edometrico	198,0

TERRENI INCOERENT I

Densità relativa

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione Densità	
	(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica	litostatica	relativa	
				totale	efficace	(%)	
				(Kg/cm ²)	(Kg/cm²)		
Strato 1	1,40	11,0	1,0	0,1	0,1	Harman	46,0
Strato 2	8,40	26,0	1,6	1,0	1,0	Harman	26,9
Strato 3	9,20	25,0	1,067	1,7	1,7	Harman	11,2
Strato 4	10,00	99,0	0,0	1,9	1,9	Harman	56,3

Angolo di resist	tenza al taglio						
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	d'attrito (°)
Strato 1	1,40	11,0	1,0	0,1	0,1	Robertson & Campanella 1983	40,0
Strato 2	8,40	26,0	1,6	1,0	1,0	Robertson & Campanella 1983	33,1
Strato 3	9,20	25,0	1,067	1,7	1,7	Robertson & Campanella 1983	28,7
Strato 4	10,00	99,0	0,0	1,9	1,9	Robertson & Campanella 1983	37,1
Modulo di You							
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Modulo di Young (Kg/cm²)
Strato 1 Strato 2 Strato 3 Strato 4	1,40 8,40 9,20 10,00	11,0 26,0 25,0 99,0	1,0 1,6 1,067 0,0	0,1 1,0 1,7 1,9	1,0 1,7	Schmertmann Schmertmann Schmertmann Schmertmann	27,5 65,0 62,5 247,5
Peso unità di vo							
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Peso unità di volume (t/m³)
Strato 1 Strato 2 Strato 3 Strato 4	1,40 8,40 9,20 10,00	11,0 26,0 25,0 99,0	1,0 1,6 1,067 0,0	0,1 1,0 1,7 1,9	0,1 1,0 1,7 1,9	Meyerhof Meyerhof Meyerhof	1,8 1,8 1,8 2,0
Peso unità di vo	olume saturo						
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Peso unità di volume saturo (t/m³)
Strato 1 Strato 2 Strato 3 Strato 4	1,40 8,40 9,20 10,00	11,0 26,0 25,0 99,0	1,0 1,6 1,067 0,0	0,1 1,0 1,7 1,9	0,1 1,0 1,7 1,9	Meyerhof Meyerhof Meyerhof Meyerhof	

STIMA PARAMETRI GEOTECNICI MEDI

TERRENI COESIV I

Coesione non d	renata							
	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Cu	
	(m)	(Kg/cm²)	(Kg/cm ²)	litostatica	litostatica		(Kg/cm ²)	
				totale	efficace			
				(Kg/cm ²)	(Kg/cm ²)			
Strato 1	1,40	15,667	1,767	0,1	0,1	Terzaghi		0,8
Strato 2	8,40	41,143	2,659	1,0	1,0	Terzaghi		2,1
Strato 3	9,20	48,0	2,333	1,8	1,8	Terzaghi		2,4
Strato 4	10,00	190,25	6,05	2,0	2,0	Terzaghi		9,5

Modulo Edomet	trico						
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Eed (Kg/cm²)
Strato 1	1,40	15,667	1,767	0,1	0,1	Metodo generale del modulo Edometrico	48,2
Strato 2	8,40	41,143	2,659	1,0	1,0		82,3
Strato 3	9,20	48,0	2,333	1,8	1,8	Metodo generale del modulo Edometrico	96,0
Strato 4	10,00	190,25	6,05	2,0	2,0	Metodo generale del modulo Edometrico	380,5
TERRENI INC Densità relativa	COERENT I						
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Densità relativa (%)
Strato 1	1,40	15,667	1,767	0,1	0,1	Harman	56,8
Strato 2 Strato 3	8,40 9,20	41,143 48,0	2,659 2,333	1,0 1,8	1,0 1,8	Harman Harman	41,5 32,4
Strato 4	10,00	190,25	6,05	2,0	2,0	Harman	77,5
Angolo di resist	enza al taglio						
	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Angolo
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		d'attrito (°)
Strato 1	1,40	15,667	1,767	0,1	0,1	Robertson & Campanella 1983	41,6
Strato 2	8,40	41,143	2,659	1,0	1,0	Robertson & Campanella 1983	35,7
Strato 3	9,20	48,0	2,333	1,8	1,8	Robertson & Campanella 1983	32,9
Strato 4	10,00	190,25	6,05	2,0	2,0	Robertson & Campanella 1983	40,5
Modulo di You			e.	Tanahan	Т-и-	Come 1	Mad-1-1-1
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Modulo di Young (Kg/cm²)
Strato 1 Strato 2	1,40 8,40	15,667 41,143	1,767 2,659	0,1 1,0		Schmertmann Schmertmann	39,2 102,9
Strato 2 Strato 3	8,40 9,20	41,143	2,659 2,333	1,0		Schmertmann Schmertmann	102,9
Strato 4	10,00	190,25	6,05	2,0	2,0	Schmertmann	475,6

Peso unità di vo	olume						
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Peso unità di volume (t/m³)
Strato 1	1,40	15,667	1,767	0,1	0,1	Meyerhof	1,8
Strato 2	8,40	41,143	2,659	1,0	1,0	Meyerhof	1,8
Strato 3	9,20	48,0	2,333	1,8	1,8	Meyerhof	1,8
Strato 4	10,00	190,25	6,05	2,0	2,0	Meyerhof	2,0
Peso unità di vo	olume saturo						
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Peso unità di volume saturo (t/m³)
Strato 1	1,40	15,667	1,767	0,1	0,1	Meyerhof	2,1
Strato 2	8,40	41,143	2,659	1,0	1,0	Meyerhof	2,1
Strato 3	9,20	48,0	2,333	1,8	1,8	Meyerhof	2,1
Strato 4	10,00	190,25	6,05	2,0	2,0	Meyerhof	2,2

PROVA PENETROMETRICA DINAMICA

Committente: Wilsider	
Cantiere: Capannone industriale	
Località: Miralduolo	

Caratteristiche Tecniche-Strumentali Sonda: DPSH TG 63-200 PAGANI

Rif. Norme DI	IN 4094
Peso Massa battente	63,5 Kg
Altezza di caduta libera	0,75 m
Peso sistema di battuta	0,63 Kg
Diametro punta conica	51,00 mm
Area di base punta	20,43 cm ²
Lunghezza delle aste	1 m
Peso aste a metro	6,31 Kg/m
Profondità giunzione prima asta	a 0,40 m
Avanzamento punta	0,20 m
Numero colpi per punta	N(20)
Coeff. Correlazione	1,47
Rivestimento/fanghi	No
Angolo di apertura punta	90 °

PROVA ... Nr.1

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH TG 63-200 PAGANI 06/04/2007 9,60 mt

Tipo elaborazione Nr. Colpi: Minimo

Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res dinamica	Pres.	Pres.
Troionata (III)	rvi. Coipi	riduzione	ridotta	(Kg/cm²)	ammissibile	ammissibile
		sonda Chi	(Kg/cm²)	(Hg/cm/)	con riduzione	Herminier -
		sonda em	(Rg/cm)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	(Rg/cm)
0,20	12	0,855	107,76	126,09	5,39	6,30
0,40	20	0,801	168,28		8,41	10,51
0,60	10	0,847	81,68		4,08	4,82
0,80	3	0,843	,	·	1,22	1,45
1,00	3	0,840	,	,	1,21	1,45
1,20	3	0,836	·		1,21	1,45
1,40	3	0,833	·		1,20	1,45
1,60	4	0,830	·	35,64	1,48	1,78
1,80	5	0,826		·	1,84	2,23
2,00	5				1,83	2,23
2,20	4	0,820	·		1,46	1,78
2,40	5	0,817	36,41	44,55	1,82	2,23
2,60	4	0,814	·	·	1,35	1,66
2,80	4	0,811	26,88		1,34	1,66
3,00	4	0,809	,		1,34	1,66
3,20	4	0,806			1,34	1,66
3,40	4	0,803	·	33,13	1,33	1,66
3,60	4	0,801	24,78	·	1,24	1,55
3,80	4	0,798	·	·	1,24	1,55
4,00	5	0,796			1,54	1,93
4,20	5	0,794	·		1,53	1,93
4,40	5	0,791 0,789	30,61	38,68	1,53	1,93
4,60 4,80	6	0,789	28,64 34,27	36,28 43,54	1,43 1,71	1,81 2,18
5,00	6	0,787	·	·	1,71	2,18
5,20	6	0,783	·		1,71	2,18
5,40	5	0,783	28,34	· · · · · · · · · · · · · · · · · · ·	1,42	1,81
5,60	6	0,781	31,95	·	1,60	2,05
5,80	6	0,777			1,59	2,05
6,00	6	0,775			1,59	2,05
6,20	6	0,774			1,59	2,05
6,40	6	0,772	31,66		1,58	2,05
6,60	6	0,770			1,49	1,94
6,80	7	0,769	·	·	1,74	2,26
7,00	6	0,767	29,73	·	1,49	1,94
7,20	6	0,766			1,48	1,94
7,40	6	0,764		38,75	1,48	1,94
7,60	6	0,763		36,73	1,40	1,84
7,80	5	0,761	23,30		1,16	1,53
8,00	6	0,760		36,73	1,40	1,84
8,20	6	0,759			1,39	1,84
- 7 - 9			. ,		,	,

8,40	7	0,757	32,45	42,85	1,62	2,14
8,60	6	0,756	26,39	34,90	1,32	1,75
8,80	8	0,755	35,12	46,54	1,76	2,33
9,00	20	0,703	81,85	116,35	4,09	5,82
9,20	50	0,552	160,64	290,86	8,03	14,54
9,40	52	0,551	166,71	302,50	8,34	15,12
9,60	50	0,550	152,40	277,12	7,62	13,86

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff. di	Nspt	Descrizi
Strato		(Kg/cm ²		Fraction	unità di	unità di	e	correlaz.		one
(m))		(%)	volume	volume	efficace	con Nspt		
					(t/m^3)	saturo	(Kg/cm ²			
						(t/m^3))			
1,4	3	28,93	Incoeren	0	2,01	0,0	0,14	1,47	4,41	Terreno
			te -							vegetale
			coesivo							e riporti
8,2	4	30,6	Incoeren	60	1,89	0,0	0,92	1,47	5,88	Limi
			te -							argillosi
			coesivo							e argille
										limose
8,8	6	34,9	Incoeren	20	1,98	0,0	1,63	1,47	8,82	Limi
			te -							sabbio
			coesivo							argillosi
9,6	20	116,35	Incoeren	0	2,15	2,35	1,77	1,47	29,4	Ghiaie
			te -							sabbiose
			coesivo							

STIMA PARAMETRI GEOTECNICI MINIMI

TERRENI COESIV I

Coesione non drenata

Descrizione	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato (1)	4,41	0.00-1,40	De Beer	0,55
Terreno vegetale e				
riporti				
Strato (2)	5,88	1,40-8,20	De Beer	0,74
Limi argillosi e argille				
limose				
Strato (3)	8,82	8,20-8,80	De Beer	1,10
Limi sabbio argillosi				
Strato (4)	29,4	8,80-9,60	De Beer	3,68
Ghiaie sabbiose				

Modulo Edometrico

Descrizione	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato (1)	4,41	0.00-1,40	Trofimenkov (1974),	46,77
Terreno vegetale e			Mitchell e Gardner	
riporti				
Strato (2)	5,88	1,40-8,20	Trofimenkov (1974),	61,76
Limi argillosi e argille			Mitchell e Gardner	
limose				
Strato (3)	8,82	8,20-8,80	Trofimenkov (1974),	91,75
Limi sabbio argillosi			Mitchell e Gardner	
Strato (4)	29,4	8,80-9,60	Trofimenkov (1974),	301,65
Ghiaie sabbiose			Mitchell e Gardner	

Modulo di Young

Descrizione	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm²)
Strato (1)	4,41	0.00-1,40	Schultze	30,32
Terreno vegetale e				
riporti				
Strato (2)	5,88	1,40-8,20	Schultze	47,22
Limi argillosi e argille				
limose				
Strato (3)	8,82	8,20-8,80	Schultze	81,03
Limi sabbio argillosi				
Strato (4)	29,4	8,80-9,60	Schultze	317,70
Ghiaie sabbiose				

Peso unità di volume

i eso unita di volune				
Descrizione	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
Strato (1)	4,41	0.00-1,40	Meyerhof	1,72
Terreno vegetale e				
riporti				
Strato (2)	5,88	1,40-8,20	Meyerhof	1,81
Limi argillosi e argille				
limose				
Strato (3)	8,82	8,20-8,80	Meyerhof	1,93
Limi sabbio argillosi				
Strato (4)	29,4	8,80-9,60	Meyerhof	2,15
Ghiaie sabbiose			-	

Peso unità di volume saturo

Descrizione	Nspt	Prof. Strato	Correlazione	Peso unità di volume
		(m)		saturo
				(t/m^3)
Strato (1)	4,41	0.00-1,40	Meyerhof	1,87
Terreno vegetale e				
riporti				
Strato (2)	5,88	1,40-8,20	Meyerhof	1,89
Limi argillosi e argille				
limose				
Strato (3)	8,82	8,20-8,80	Meyerhof	2,12
Limi sabbio argillosi				
Strato (4)	29,4	8,80-9,60	Meyerhof	2,35
Ghiaie sabbiose				

TERRENI INCOERENT I

Densità relativa

Descrizione	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Densità relativa (%)
Strato (1)	4,41	0.00-1,40	4,41	Gibbs & Holtz	21,77
Terreno vegetale e				1957	
riporti					
Strato (2)	5,88	1,40-8,20	5,88	Gibbs & Holtz	16,16
Limi argillosi e				1957	
argille limose					
Strato (3)	8,82	8,20-8,80	8,82	Gibbs & Holtz	16,96
Limi sabbio				1957	
argillosi					
Strato (4)	29,4	8,80-9,60	29,4	Gibbs & Holtz	39,16
Ghiaie sabbiose				1957	

Angolo di resistenza al taglio

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Angolo d'attrito
		(m)	presenza falda		(1)
Strato (1)	4,41	0.00-1,40	4,41	Sowers (1961)	29,23
Terreno vegetale e					
riporti					
Strato (2)	5,88	1,40-8,20	5,88	Sowers (1961)	29,65
Limi argillosi e					
argille limose					
Strato (3)	8,82	8,20-8,80	8,82	Sowers (1961)	30,47
Limi sabbio					
argillosi					
Strato (4)	29,4	8,80-9,60	29,4	Sowers (1961)	36,23
Ghiaie sabbiose					

STIMA PARAMETRI GEOTECNICI MEDI

TERRENI COESIV I

Coesione non drenata

Descrizione	Nspt	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm²)
Strato (1)	11,33	0.00-1,40	De Beer	1,42
Terreno vegetale e				
riporti				
Strato (2)	7,7	1,40-8,20	De Beer	0,96
Limi argillosi e argille				
limose				
Strato (3)	10,29	8,20-8,80	De Beer	1,29
Limi sabbio argillosi				
Strato (4)	63,21	8,80-9,60	De Beer	7,90
Ghiaie sabbiose				

Modulo Edometrico

Descrizione	Nspt	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm²)
Strato (1)	11,33	0.00-1,40	Trofimenkov (1974),	117,35
Terreno vegetale e			Mitchell e Gardner	
riporti				
Strato (2)	7,7	1,40-8,20	Trofimenkov (1974),	80,33
Limi argillosi e argille			Mitchell e Gardner	
limose				
Strato (3)	10,29	8,20-8,80	Trofimenkov (1974),	106,74
Limi sabbio argillosi			Mitchell e Gardner	
Strato (4)	63,21	8,80-9,60	Trofimenkov (1974),	646,50
Ghiaie sabbiose			Mitchell e Gardner	

Modulo di Young

Descrizione	Nspt	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato (1)	11,33	0.00-1,40	Schultze	109,90
Terreno vegetale e				
riporti				
Strato (2)	7,7	1,40-8,20	Schultze	68,15
Limi argillosi e argille				
limose				
Strato (3)	10,29	8,20-8,80	Schultze	97,94
Limi sabbio argillosi				
Strato (4)	63,21	8,80-9,60	Schultze	706,52
Ghiaie sabbiose				

Peso unità di volume

Descrizione		Nspt	Prof. Strato	Correlazione	Peso unità di volume
			(m)		(t/m^3)
Strato (1)	11,33		0.00-1,40	Meyerhof	2,00
Terreno vegetale e					
riporti					
Strato (2)		7,7	1,40-8,20	Meyerhof	1,89
Limi argillosi e argille					
limose					
Strato (3)		10,29	8,20-8,80	Meyerhof	1,98
Limi sabbio argillosi				-	
Strato (4)		63,21	8,80-9,60	Meyerhof	2,50
Ghiaie sabbiose				· · · · · · · · · · · · · · · · · · ·	

Peso unità di volume saturo

Descrizione	Nspt	Prof. Strato	Correlazione	Peso unità di volume
	_	(m)		saturo
				(t/m^3)
Strato (1)	11,33	0.00-1,40	Meyerhof	2,20
Terreno vegetale e				
riporti				
Strato (2)	7,7	1,40-8,20	Meyerhof	1,90
Limi argillosi e argille				
limose				
Strato (3)	10,29	8,20-8,80	Meyerhof	2,18
Limi sabbio argillosi				
Strato (4)	63,21	8,80-9,60	Meyerhof	2,50
Ghiaie sabbiose			_	

TERRENI INCOERENT I

Densità relativa

Descrizione	Nspt	Prof. Strato	Nspt corretto per	Correlazione	Densità relativa
	-	(m)	presenza falda		(%)
Strato (1)	11,33	0.00-1,40	11,33	Gibbs & Holtz	40,83
Terreno vegetale e				1957	
riporti					
Strato (2)	7,7	1,40-8,20	7,7	Gibbs & Holtz	20,86
Limi argillosi e				1957	
argille limose					
Strato (3)	10,29	8,20-8,80	10,29	Gibbs & Holtz	19,64
Limi sabbio				1957	
argillosi					
Strato (4)	63,21	8,80-9,60	63,21	Gibbs & Holtz	57,53
Ghiaie sabbiose				1957	

Angolo di resistenza al taglio

Descrizione	Nspt	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Angolo d'attrito
Strato (1)	11,33	0.00-1,40		Sowers (1961)	31,17
Terreno vegetale e	,	,	,	, ,	,
riporti					
Strato (2)	7,7	1,40-8,20	7,7	Sowers (1961)	30,16
Limi argillosi e					
argille limose					
Strato (3)	10,29	8,20-8,80	10,29	Sowers (1961)	30,88
Limi sabbio					
argillosi					
Strato (4)	63,21	8,80-9,60	63,21	Sowers (1961)	45,7
Ghiaie sabbiose					